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Abstract. A one-dimensional model of hard rods with a long-range cosine interaction is 
solved exactly in some canonical ensemble EPSCS. I t  exhibits a crystalline phase at IOW 
temperatures as a result of  a spontaneous symmetry breaking o f t h e  order parameter which 
represents an effective collective mode. When the wavelength of the attractive potential is 
shorter than a n d  commensurate with the rod length, the rods behave like point particles 
in a reduced volume: when the wavelength is comparable to the system size, the effective 
potential is equivalent to a quenched random field. 

1. Introduction 

The purpose of this paper is to investigate the equilibrium behaviour of an order- 
disorder transition caused by a long-range potential with non-trivial spatial structure. 
Without a hard core, this model was first analysed by Percus in 1987 [l] (which 
continues a line that goes back to Ufford and  Wigner (1942) [Z] and then used by 
Dyson (1962) and others (see 131 for more references). With a hard core, the system 
was proposed to model an effective interfacial dynamics in a long wavelength limit 
[4]; meanwhile, an  exact solution of the model in the case of wavelength = core-length 
was found very recently [ 5 ]  in the grand canonical ensemble. The solution in [ 5 ]  
appears complicated and  it made use of a result of the nonuniform hard rod fluids 
which was originally derived for decaying potentials. We give here a simpler and  
straightforward derivation for more generalized short wavelength cases by carrying 
out an exact calculation in a canonical ensemble. Then, for comparison, we also analyse 
the long wavelength case approximately. We conclude by making comments about 
some artifacts of the model and the approximation made in the long wavelength case. 
We should mention that a hard-rod fluid in a periodic potential has been analysed 
previously by an approximate density functional method [6] of van der Waals type, 
where the interplay between hard-rod length and the periodicity of the potential was 
observed. With a more rigorous density functional method, [4] discussed large Ructu- 
ations and phase transitions. These 'inverse' approaches are, in some sense, complemen- 
tary to our direct method. 

* Supported by DOE Contract DE-FCOZ-88ER25053. 
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2. Model and transformation 

Consider N particles of mass m with hard core diameter a, interacting pairwise via a 
long-range cosine potential on a one-dimensional ring of size L. The total potential 
energy reads 

where 

if 1x1, lL-lxll> a 
otherwise 

and U ,  A > O  are constants (assuming L =  MA with M a positive integer). 
The canonical partition function at p = l /k,T may then be written as 

~ N ( L , p ) = ~ l ~ L d q ,  . . . l ~ L d q N e ~ ~ U *  (2) 

with A--. 
As pointed out in [l], it is natural to introduce the auxiliary ‘mode’ variables C 

and S, and rewrite the long range part in terms of its Gaussian transform (alias Kac 
[7], Siegert [8] or Hubbard-Stratonovich [lo] transformation): 

A 
271 
A 

+ C 1 cos - qi+ S 1 sin - qi 

where we have made a change to polar coordinates (r, a )  in the C-S  plane. This 
trick of transforming the soft-part of a pair potential into an effective external field 
has been used for years by many authors (see [lo] for instance). 

After this transformation and ordering of the particles, (2) takes a new form 

xexp -- L r l +  r 1 cos(?- a))  ( 2 p u  

or 

(4) 
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where 

and  (.)<, denotes the a-averaging. 
Physically, this may be interpreted as N hard rods moving in a cosine external 

potential with an amplitude distributed as a Maxwellian and a uniformly distributed 
random phase. We write, for N large, that 

o r  in new variables x, = q, - (i  - 1)a 

dx,. . . Iox' dx ,  N i '  , = o  exp( r cos[2(xj+,+ja) A -a (7)  

We see clearly that, due  to the hard core n # 0, the effective potential is not only 
inhomogeneous in the particle position, but also inhomogeneous in the particle index- 
ing, the latter adds a further discrete 'phaseshift' to the original continuous potential 
in (3). The general solution will of course depend on the relative choice of the three 
length scales a, A and L. 

3. Short wavelength case 

We begin with the study of the short wavelength case (termed 'S-case') which is defined 
by a = kA for some positive integer k. k = 1 was the special case studied in [5] using 
grand canonical ensemble. Since all the discrete 'phaseshifts' vanish, (7)  is actually 
independent of a and may be reduced to 

QN(r)  =L ( ( M  - N k )  j(: d x  exp( r cos x))" 
N !  

=E(l-=) Nk A N I t ( r )  
N !  
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where Io is the modified Bessel function and we have changed the integration from 
the ordered space to the N-dimensional symmetric space. The partition function (5) 
then becomes 

L ZN(M,p)=- L (-) A N M N  %( 1 -g) [,: r e rp (  -2pu r2) / r ( r )  dr. N 

Pu A 

In the thermodynamic limit M + m, N +  a, N k / M  -, p, the Helmholtz free energy per 
unit length f ( p ,  p )  is seen to be given by 

1 

where 

Here r plays the role of an order parameter. Since d i n  I , , ( r ) /dr=  / , ( r ) / I o ( r )  is 
monotonic in r and ranges from 0 to I ,  it is easy to see from figure 1 that 

Figure 1. The S-care: hr, l , ( r l / l ~ , i r )  against r (left) and W r )  against r (right)  as one 
decreases b - T / p  from ( a )  to ( ( . I .  ( h = k h l i a p B l ) .  
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where ro(pp)  is the unique positive root of 

( p p ) =  = u/2kA is the (second order) critical point. The phase transition is ofthe classical 
type with the critical exponent, for instance, p =; (i.e. rg- T,- T ) .  It should he noticed 
that the phase diagram depends on the temperature and the density only through the 
combination T i p .  

The key to the exact solution of the S-case is the vanishing of the 'phaseshifts' in 
(8) as opposed to (7) .  It implies physically that the collective contributions to the 
effective potential, due to the hard cores, act destructively and get cancelled exactly 
as a result. Aside from the excluded volume effect in the first term of (lo), the rods 
behave like free point particles ( a  = 0) moving in an external cosine potential. At high 
I / p ,  the sysiem is in the disordered state-a uniform h i d ;  at iow T i p ,  it crysiaiiites 
dues to the spontaneous symmetry breaking ro# 0. The crystalline structure can he 
hest seen from the equivalent (transformed) system in which there exists an effective 
external potential - ( ro/p)  cos(27ix/A). It follows that the local density profile (or, 
two-point correlation function, to he more precise) will be proportional to the corre- 
sponding Boltzmann weight 

-, 

4. Long wavelength case 

Although the S-case can be soived exactiy in a ciosed Form, it seems a hit artificial 
physically as  A S a .  It is more interesting to consider the case of long wavelength 
(L-case) defined by A = L. As a matter of fact, this was in the original model [ l ]  which 
is generalized in [4] to provide an effective interfacial dynamics. But this should not 
he confused with the Kac-Uhlenbeck limit [ll],  the latter has an attractive tail with 
range strictly much smaller than the size of the system (this point will he further 
discussed at the end of the paper). 

For A =  L, the thermodynamics is again determined by ( 5 )  with QN(r)  given by 
(7 ) .  Due to the correlation between the phaseshift and the particle indexing, the exact 
solution becomes extremely involved. We make an approximation by ignoring this 
correlation and write (7) as 

Numerical tests indicate that this is an approximation when a is small, which translates 
into a low density approximation (see the end of the last section for more comments). 

Within this approximation, it  is convenient to rewrite ( 7 )  as 

For L, N large ( N I  L - p ) ,  this becomes 

(!?) 

I1 d0 - expa(r  cos( 0+4  - a ) )  2m 
. 
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In the thermodynamic limit L+ W, N +  a( N a / L +  p). the Helmholtz free energy 
density can be  read off as 

where 

r 2 - y ( r ;  p )  @(pJ3)-<,lr<m2upp min __ 1 

with 

? ( r ;  p ) = m a x  @(r ;  p ;  a )  =@(r;  p ;  0) 

and 

which has a maximum at a = 0 and  a minimum at a = T. 
It is obvious that Y plays the same role in the L-case as In Io does in the S-case. 

Despite the remarkable simplicity of its form, it cannot be integrated into a closed 
form. Nevertheless, it is a rather smooth function of r, and the physical message it 
carries is quite transparent. 

First of all, i t  is easy to check that if p<< 1,  Y -In r , , ( r ) + O ( p ) .  It means physically 
that, at low density, it is always possible for particles to arrange themselves into an  
optimal position as in the S-case. Namely, since A = L, all the particles at low tem- 
perature tend to squeeze together within the half wavelength interval so that they can 
interact in phase to maximize the attention. 

To analyse Y into more detail, it is very instructive to consider Y as a free energy 
of a quenched random system itself. The random external potential - ( r / p )  cos[(t - 
p ) 8 + p + ]  depends upon a uniformly distributed random phase variable 4. With the 
obvious notation '( )' and '-' as the 'thermal' and  'quenched averages, we can write 
the derivatives as 

and 

Y"( r )  = (cos2[( 1 - p ) O + p + ] )  - (cos[(l - p ) 8  + p 4 l ) ' a  0. (20) 

We suppress the p-dependence of Y. 
The last equation shows the convexity of the function "(I). Y " ( r ) = O  occurs only 

i f  (a) r, p = 0 ,  as in the S-case; ( b )  r = m ,  no  thermal fluctuations (also true for the 
S-case); o r  (c) p = 1 ,  Y = 0. At the origin, we have 

sin'(Tp) 
Y ( 0 ) = 0  and Y' (0)= s 0. 

p ( 1 - p )  

Therefore, Y ( r )  starts out from the origin with a negative slope ( p  # O  and 1, noticing 
also that min " ' ( 0 )  occurs at p =f ) .  This is because the attractive strength is not strong 
enough to overcome the entropy effect (represented by the random initial positions or  
the quenched randomizations), the latter effect makes the particles interact off-phase 
which results in a net effective repulsion. According to (16), locally r = 0 is always a 
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minimum of @ ( I ) .  The question now becomes whether there exists another lower 
minimum (where @ is negative). 

Asymptotically, we found T(r) - c(p)r as r +m with c ( p )  2 0 a decreasing function 
of p(c(0 , )  = 1, c(l-) = 0). Since the two terms in (16) are both convex, at a fixed p f 0 
and 1, there are five possibilities as shown below. 

In figure 2, ( a ) ,  ( b )  and ( c )  correspond to high temperature disordered phases 
where the core repulsion and the quenched randomness dominate (the 'roton' 
phenomenon as indicated by (c )  can only be observed in a finite system); ( d )  corre- 
sponds to a low temperature crystalline phase where the net in-phase attractions among 
the particles dominate; ( d )  corresponds to a 'phase coexistence', of course only in the 
sense of the ensemble average. p = 1 is the singular point where V( r )  = 0, even though 

Figure 2. The L-case: hr. " ( r l  against I ( left)  and @ ( r )  againsl r (right] as one decreases 
h - T / p i l t a f i x e d p # O , l f r o m ( a ) t o l e i . ( h = L A / ( u p ~ J ) .  
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it corresponds to disorder for the quenched random system, it is actually an extremely 
ordered state for the original system because it coincides with the close packing. 

S. Final comments 

To summarize, we see in both cases, the phase diagram consists of disordered and 
ordered regions as shown in figure 3. 

The major differences are: (1) In the S-case, the phase diagram depends only on 
T / p ;  in the L-case, it depends on both p and T / p .  ( 2 )  The phase dividing point c in 
the S-case is a second order transition point; the phase dividing line c in the L-case 
is a first order coexistence curve. The order parameter r, (or, better, tanh ro)  against 
T for a fixed p is depicted in figure 4 for both cases. 

The gap g in figure 2 and figure 4 are proportional to p for small p. therefore L-case 
is more general in the sense that it will reduce to S-case as p + 0. It can also be seen 
from figure 3 that the phase diagram of the S-case is the sub-diagram of the L-case. 

In comparison with the grand canonical approach for the special S-case (i.e. A = a ) ,  
we see the canonical one is far more straightforward and the analysis is simpler and 
more transparent. We notice that the spontaneous symmetry broken should be referred 
to the order parameter io, the symmetry of the angle 01 in (3) which corresponding to 
the translational invariance cannot be broken without an external potential (i.e. p = 
constant). 

We should emphasize that the double minima ('coexistence') is an artifact of the 
long-range model. It is well known that this occurs when the range of the interaction 
depends on the size of the system. It is, in some sense, analogous to the van der Waals 
loop in many mean field theories. In more realistic models where the range of interaction 

S - C m  LS- 

Figure 3. The phase diagrams. For the Scare, the crystalline phase i s  to the left of the 
second order transition point c; for the L-case, i t  is below the first order 'coexistence' 
CUrW c. 

S S r S  L-SW 

Figure 4. The order parameter r,, (actually tanh r,, is depicted) against T a t  a fixed P f- 0. 1. 



Crystallization of I D  hard rods 3957 

may he controlled separately, one should let the range of interaction go to infinity 
after the thermodynamic limit has been taken [12]. This is the case of Kac-Uhlenheck 
limit and it is very different from our current situation ( A  = L - m ) .  Even if A remains 
finite, the periodicity of the cosine potential still guarantees the range of interaction 
to he L. 

We should emphasize again the approximation made in the solution of the long 
wavelength case and the phase diagram is based on this approximation. It is interesting 
to mention that the exact solution in the general case is equivalent to a I D  homogeneous 
SOS model. The relation may be briefly indicated as follows: let us define as integral 
QN by 

& ( L - N a ) =  lo 
which is the essential part of Q in (7) .  0 can he  regarded as a partition function for 
N hard-core particles moving in an  inhomogeneous external field. Taking the Laplace 
transform with respect to L -  N a  (which gives the partition function of the isoparic 
ensemble), using the (modified) Bessel function expansion for the integrand, we have 

1 L- Nu 

dxN-, (6"dx ,_ ;... ~ ~ d x , e x p ( r N ~ ' c o s [ k ( x j + , + j a ) - ~ ]  ,=a 

1 . . .  1 1  
G ( p ) =  1 n l , , ( r ) e x p  - 

("81 I p p-ikm, p - i k ( m N +  . . .+  m,) 

where m, run over all integers Z.  Or, using nj defined by m, = n,,, - n, with nNt l  0 

where the nearest neighbour transfer matrix T is given by 
e-,"~"-,,'l+ll""' 

p-ikn'  
T(n,  n ' ) =  l n - f l . ( r )  

again n, run over all integers (one may also construct Hermitian transfer matrices by 
changing the signs of all other n , ) .  This partition describes manifestly an interface 
model with integer interfacial heights. The thermodynamics is determined by the largest 
real eigenvalue and phase transitions may he related to the degeneracies. Although 
the SOS transfer matrix is homogeneous, its structure is still very complicated. We hope 
to report its investigation later in a separate paper. 
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